Close

Delete Collection?

Are you sure you want to delete this collection permanently?

Close

Delete Collection?

Are you sure you want to delete this collection permanently?

33096d01-721c-4953-ad26-5a4971ceb37a

A New way, The Area of Trapezium

Mathematics - A new way to get area of Trapezium(BrE),Trapezoid(AmE), yes we all know area of Trapezium,Trapezoid but there are lot ways how to get and prove/proof as many Mathematicians have proved "Pythagorean Theorem.

A New way, The Area of Trapezium by Piyush Goel


Lot of mathematicians have proved Pythagoras theorem in their own ways. If you google it you will indeed found hundred of ways.

Meanwhile I was also sure that maybe one day I could find something new out of this incredible Pythagoras theorem and Recently I got something which I would like to share with you.

To Prove: Deriving the equation of area of trapezium using Arcs

Proof: There is a triangle ABC with sides a b and c as shown in the figure.

Now,

Area of ∆ BCEG = Area of ∆ BDC +Area of ⌂ DCEF + Area of ∆ EFG

c^2=ac/2+ Area of ⌂ DCEF + (c-b) c/2

(2c^2– ac –c^2+ bc )/2=Area of ⌂ DCEF

(c^2– ac+ bc )/2=Area of ⌂ DCEF

c(c– a+ b)/2=Area of ⌂ DCEF

Area of ⌂ DCEF=BC(DE+CF)/2

Copyrighted©PiyushGoel

Reference Image
Close